Abstract

In this work, the experimental and numerical analyses of Forming Limit Curve (FLC) and Forming Limit Stress Curve (FLSC) for Advanced High Strength Steel (AHSS) sheet, grade JAC780Y, are performed. Initially, the FLC is experimentally determined by means of the Nakazima Stretch forming test. Subsequently, the FLSC of investigated steel was plastically calculated using the experimental FLC data. Different yield criteria including Hill48, and Yld89, are applied to describe plastic flow behavior of the AHS steel and Swift hardening law is taken into account. Hereby, influences of the constitutive yield models on the numerically determined FLSCs are evaluated regarding to those results from the experimental data. The obtained stress based forming limits are affected significantly by the yield criteria. Finally, the experimental and numerical formability analyses of Fukui stretch-drawing and square cup drawing tests are studied through FLC and FLSCs. It is observed that all stress based curves can be used very well to describe material formability of the examined steel compared to the strain based FLC. The strain based FLC depend on forming history and strain paths change. In the other hand, the stress based FLC do not depend on these issue. In this study, it can be concluded that the FLSCs could predict failure more realistically and better than the strain based FLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.