Abstract

In this work, Forming Limit Curves (FLCs) of the conventional and pre-stretched High Strength Steel (HSS) sheet grade 440 (SCGA440-45) were investigated. The conventional forming limit curve was experimentally determined by using the Nakajima stretching test. Subsequently, the non-linear strain path FLCs were precisely developed through the Nakajima stretching test after the specimens were pre-stretched in biaxial direction up to several levels on the Marciniak In-plane stretching test. The gained non-linear strain path FLCs were compared with the conventional FLC.Additionally, the experimental Forming Limit Stress Curve (FLSCs) were calculated using the experimental FLC and non-linear strain path FLCs data from investigated steel sheet. The yield criterion Hill’48 was employed in combination with the Swift strain hardening law to describe anisotropic deformation and plastic flow behavior of the HSS sheet, respectively. Hereby, the influence of pre-stretching levels on the experimentally determined the FLCs and FLSCs were examined. The results prove a significant influence of the pre-stretching levels on the both FLCs and FLSCs of the investigated HSS sheet. For a low pre-stretching in biaxial loading the FLCs demonstrated a reduced formability and the FLSCs exhibited the limited stress levels depending on the experimental FLC data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call