Abstract

Based on an examination of traditional arc-enveloped grinding method, a single-point inclined axis nanogrinding method is presented to grind an aspheric insert by compensating tool setting error, radius error, and residual form error. Profile data from on-machine measurement are used to obtain the tool setting error and radius error of grinding wheel, as well as the normal residual form error. Compensation method of single-point inclined axis nanogrinding is built up for generating new compensation path. Grinding test of aspheric tungsten carbide insert with diameter 9.5 mm is conducted to evaluate performances of the grinding mode and compensation method. A last form error of 200 nm in peak to valley and surface roughness of 2.243 nm in Ra are achieved. These results indicated that the form error compensation method and single-point inclined axis nanogrinding mode can significantly improve form accuracy and surface roughness of ground surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call