Abstract

Mould inserts with high form accuracy can be produced with ease using modem grinding technologies. However, several grinding cycles are often required to reduce the form error to an acceptable value, significantly dependent on the tool path compensation technique used. This paper reports on a novel form error compensation technique for tungsten carbide mould insert machining utilizing a parallel grinding method. In this technique, a newly developed program is used to process the profile data measured using a Form Talysurf profilometer, and to further generate the NC tool path for form error compensation. The developed technique focuses on the compensation of form error resulted by two major error sources, wheel radius and waviness errors. Using the developed technique, the initial residual form error upon the completion of primary grinding is minimized. Subsequently, the residual form error is compensated by modifying the NC tool path. With this technique, the speed of convergence of the residual form error has improved markedly. The grinding result shows that, after just one compensation cycle, a form error of approximately 0.3 mu m in PV is achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.