Abstract

We use a dynamic panel Tobit model with heteroskedasticity to generate point, set, and density forecasts for a large cross-section of short time series of censored observations. Our fully Bayesian approach allows us to flexibly estimate the cross-sectional distribution of heterogeneous coefficients and then implicitly use this distribution as prior to construct Bayes forecasts for the individual time series. We construct set forecasts that explicitly target the average coverage probability for the cross-section. We present a novel application in which we forecast bank-level charge-off rates for credit card and residential real estate loans, comparing various versions of the panel Tobit model. Institutional subscribers to the NBER working paper series, and residents of developing countries may download this paper without additional charge at www.nber.org.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.