Abstract

: In this article, an artificial neural network for modeling and forecasting of fuzzy time series is presented. Modeling fuzzy time series with fuzzy data as random realizations of an underlying fuzzy random process enables forecasting of future fuzzy data following the observed time series. Analysis and forecasting of time series with fuzzy data may be carried out with the aid of artificial neural networks. A significant advantage is the fact that neural networks do not require a predetermined process model to simulate and forecast time series possessing fuzzy random characteristics. Artificial neural networks have the ability to learn the characteristics of an existing fuzzy time series, to represent the underlying fuzzy random process, and to forecast future fuzzy data following the time series observed. The algorithms developed are demonstrated using a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.