Abstract
Due to the complex routes and the dynamic changing factors in transportation, precise traffic speed prediction is very difficult. Traditional prediction methods only focus on a single monitoring site, without establishing a relationship between different sites, so the precision is poor. The deep learning method can model traffic networks well, but suffers from information loss and the disadvantage of single input data. A multisource spatio-temporal hybrid dilated graph convolutional network (GCN) for forecasting traffic speed is proposed in this paper. A GCN based on hybrid dilated convolution can extract the influence of adjacent information and capture dynamic spatial and non-linear temporal correlations. Considering multisource data will increase the forecasting precision and improve the generalisation ability. Using a real-world data set, the performance of the proposed model was validated against other baselines (a fully connected neural network, convolutional neural network and spatio-temporal GCN). The proposed model was found to be superior to other models as it considers proximity information, which is often overlooked, and multifactorial influence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Civil Engineers - Transport
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.