Abstract
The appetite of fish significantly influences aquaculture efficiency and fish welfare. However, accurately assessing fish appetite has posed a challenging problem. Currently, the study of fish feeding behaviour relies primarily on the overall information obtained from images of fish schools, often overlooking the distinctive behavioural traits of individual fish. Analysing the behaviour of individual fish is hindered by challenges such as intraclass variation and cross-occlusion within real aquaculture environments. To address these challenges, this paper introduces a novel method for assessing appetite based on individual fish behaviour. The ByteTrack model was improved to enable stable tracking of each fish within a school under complex conditions. Additionally, this paper employs the spatiotemporal graph convolutional neural network (ST-GCN) to extract the movement characteristics of individual fish, facilitating accurate appetite assessment. The experimental results demonstrate that the proposed method achieves 98.47% accuracy in appetite assessment, surpassing the performance of other state-of-the-art methods. This paper provides a new opportunity and effective means for analysing fish behaviour and appetite in intricate environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.