Abstract

Accurate forecasting of daily tourism demand is a meaningful and challenging task, but studies on this issue are scarce. To address this issue, multisource time series data, relating to past tourist volumes, web search information, daily weather conditions, and the dates of public holidays, are selected as the forecasting variables. To fully capture the relationship between these forecasting variables and actual tourism demand automatically, an ensemble of long short-term memory (LSTM) networks is proposed with a correlation-based predictor selection (CPS) algorithm. The effectiveness of the proposed method is verified in daily tourism demand forecasting for the Huangshan Mountain Area, benchmarked against 11 forecasting methods. This study contributes to the literature by (1) introducing the use of big data in daily tourism demand forecasting, (2) proposing an ensemble of LSTM networks for daily tourism demand forecasting, and (3) providing an effective predictor selection algorithm in ensemble learning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.