Abstract

Time series forecasting is essential for various engineering applications in finance, geology, and information technology, etc. Long Short-Term Memory (LSTM) networks are nowadays gaining renewed interest and they are replacing many practical implementations of the time series forecasting systems. This paper presents a novel LSTM ensemble forecasting algorithm that effectively combines multiple forecast (prediction) results from a set of individual LSTM networks. The main advantages of our LSTM ensemble method over other state-of-the-art ensemble techniques are summarized as follows: (1) we develop a novel way of dynamically adjusting the combining weights that are used for combining multiple LSTM models to produce the composite prediction output; for this, our method is devised for updating combining weights at each time step in an adaptive and recursive way by using both past prediction errors and forgetting weight factor; (2) our method is capable of well capturing nonlinear statistical properties in the time series, which considerably improves the forecasting accuracy; (3) our method is straightforward to implement and computationally efficient when it comes to runtime performance because it does not require the complex optimization in the process of finding combining weights. Comparative experiments demonstrate that our proposed LSTM ensemble method achieves state-of-the-art forecasting performance on four real-life time series datasets publicly available.

Highlights

  • Time series is a set of values wherein all values of one index are arranged in chronological order

  • The main advantages of our Long Short-Term Memory (LSTM) ensemble method over other state-of-the-art ensemble techniques are summarized as follows: (1) we develop a novel way of dynamically adjusting the combining weights that are used for combining multiple LSTM models to produce the composite prediction output; for this, our method is devised for updating combining weights at each time step in an adaptive and recursive way by using both past prediction errors and forgetting weight factor; (2) our method is capable of well capturing nonlinear statistical properties in the time series, which considerably improves the forecasting accuracy; (3) our method is straightforward to implement and computationally efficient when it comes to runtime performance because it does not require the complex optimization in the process of finding combining weights

  • For using mean absolute error (MAE), prediction errors can be reduced as much as 16%, 16%, 14%, and 13% in the same order of the aforementioned time series by using the proposed LSTM ensemble method

Read more

Summary

Introduction

Time series is a set of values wherein all values of one index are arranged in chronological order. The objective of time series forecasting is to estimate the value of a sequence, given a number of previously observed values. To this end, forecast (prediction) models are needed to predict the future based on historical data [1]. The traditional mathematical (statistical) models, such as Least Square Regression (LSR) [2], Autoregressive Moving Average [3,4,5], and Neural Networks [6], were widely used and reported in literature for their utility in practical time series forecasting. Time series forecasting has fundamental importance in numerous practical engineering fields such as energy, finance, geology, and information technology [7,8,9,10,11,12]. Forecasting of electricity consumption is of great importance in deregulated electricity markets for all of the stakeholders: energy wholesalers, traders, retailers, and consumers [10]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call