Abstract

Abstract Pair potentials afford a quantitative starting point for studying the vacancy formation energy E v in hot close-packed crystals such as Ar. A summary will be given of the relation of E v to the melting temperature T m, via liquid structure, and a brief comment made on the role of three-body-forces. This leads into a discussion of ‘criteria’ characterizing the solid—liquid phase transition, one of these being the assertion that a close-packed crystal melts when the internal energy required to create a localized hole (the unrelaxed vacancy in the hot crystal) is equal to the change in internal energy at T m required to expand the liquid by one atomic volume. When N-body forces become important and are treated by so-called glue models, exemplified in the work of R. A. Johnson (1988, Physical Review B, 37, 3924), on a model of Cu metal, the important role of the shear modulus in determining both E v (now at T = 0) and the divacancy binding energy is stressed. Finally, E v in, for example, Al is argue...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call