Abstract

Abstract Pair potentials afford a quantitative starting point for studying the vacancy formation energy E v in hot close-packed crystals such as Ar. A summary will be given of the relation of E v to the melting temperature T m, via liquid structure, and a brief comment made on the role of three-body-forces. This leads into a discussion of ‘criteria’ characterizing the solid—liquid phase transition, one of these being the assertion that a close-packed crystal melts when the internal energy required to create a localized hole (the unrelaxed vacancy in the hot crystal) is equal to the change in internal energy at T m required to expand the liquid by one atomic volume. When N-body forces become important and are treated by so-called glue models, exemplified in the work of R. A. Johnson (1988, Physical Review B, 37, 3924), on a model of Cu metal, the important role of the shear modulus in determining both E v (now at T = 0) and the divacancy binding energy is stressed. Finally, E v in, for example, Al is argued to be closely connected with surface energy, through the similarity of conduction-electron density profiles around the vacant site and through the planar surface. This leads to a brief account of unpublished work on mechanical properties in the liquid at T m, and in particular shear viscosity, which is related to surface tension via the velocity of sound and the thickness of the liquid vapour interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call