Abstract
We present force-clamp data on the collapse of ubiquitin polyproteins in response to a quench in the force. These nonequilibrium trajectories are analyzed using a general method based on a diffusive assumption of the end-to-end length to reconstruct a downhill free energy profile at 5pN and an energy plateau at 10pN with a slow diffusion coefficient on the order of~100nm^2/s. The shape of the free energy and its linear scaling with the protein length give validity to a physical model for the collapse. However, the length independent diffusion coefficient suggests that internal rather than viscous friction dominates and thermal noise is needed to capture the variability in the measured times to collapse.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.