Abstract

We address the problem of constructing accurate mathematical models of the dynamics of complex systems projected on a collective variable. To this aim we introduce a conceptually simple yet effective algorithm for estimating the parameters of Langevin and Fokker-Planck equations from a set of short, possibly out-of-equilibrium molecular dynamics trajectories, obtained for instance from transition path sampling or as relaxation from high free-energy configurations. The approach maximizes the model likelihood based on any explicit expression of the short-time propagator, hence it can be applied to different evolution equations. We demonstrate the numerical efficiency and robustness of the algorithm on model systems, and we apply it to reconstruct the projected dynamics of pairs of C60 and C240 fullerene molecules in explicit water. Our methodology allows reconstructing the accurate thermodynamics and kinetics of activated processes, namely free energy landscapes, diffusion coefficients, and kinetic rates. Compared to existing enhanced sampling methods, we directly exploit short unbiased trajectories at a competitive computational cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.