Abstract

Low-angle grain boundaries (GBs) in superconductors exhibit intermediate Abrikosov vortices with Josephson cores, whose length l along GB is smaller than the London penetration depth, but larger than the coherence length. We found an exact solution for a periodic vortex structure moving along GBs in a magnetic field H and calculated the flux flow resistivity R(F)(H), and the nonlinear voltage-current characteristics. The predicted R(F)(H) dependence describes well our experimental data on 7 unirradiated and irradiated YBa(2)Cu(3)O(7) bicrystals, from which the core size l(T), and the intrinsic depairing density J(b)(T) on nanoscales of a few GB dislocations were measured for the first time. The observed J(b)(T) = J(b0)(1-T/T(c))(2) indicates a significant order parameter suppression on GB.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.