Abstract

Flux flattening and power uprating of large heavy water power reactors (HWRs) are demonstrated as an application of an accelerator-driven photoneutron source (ADS) in the ADS-CANDU concept where an array of electron linear accelerators is configured around the periphery of a subcritical CANDU-6 core. The localized ADS generated through (e−,γ,n) reactions in the HWR lattice perturbs the reactor power distribution by increasing the power of low-power bundles and depressing the power at the core center relative to the fundamental mode power distribution. Gross power uprating is feasible when the system is near critical, but the ADS array consumes tens of megawatts electric exceeding the power gained by a factor of more than 2 for the conservative ADS performance specifications assumed in the analysis. Several important challenges of fixed-source Monte Carlo simulations of near-critical multiplying media are investigated including severe load imbalance issues with distributed-memory parallel computing architecture and correlated local tallies in nonanalog (implicit absorption) Monte Carlo radiation transport. All subcritical fixed-source simulations in the study readily exceed the default random number stride used in most production Monte Carlo codes, and the stride exceedance causes both bias in local tally results (bundle powers) and spatial autocorrelation of these errors/biases in the large core. A legacy stride exceedance is critically reviewed, and the conclusions and subsequent interpretations of those conclusions are rejected. Several classes of radiation transport Monte Carlo problems are likely to be susceptible to stride exceedance, and this issue needs to be promptly addressed by the Monte Carlo analyst and code developer communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.