Abstract

Ratiometric fluorescence has drawn extensive attention owing to its self-calibration property. However, it is difficult to obtain appropriate fluorescent materials that can be excited under one excitation and possess well-resolved signals simultaneously. In this work, with the optical properties of the fluorescence of carbon dots (CDs) and the second-order scattering (SOS) of ZIF-90 (zeolitic imidazole frameworks-90) nanoparticles, the synthesized CDs@ZIF-90 can be applied to phosphate (PO43-) ratiometric detection. The fluorescence of CDs is greatly suppressed through encapsulating CDs into ZIF-90. Nevertheless, the SOS is quite obvious due to the high scattering intensity of large size ZIF-90. The competitive coordination between PO43- and the metal node of ZIF-90 decomposes CDs@ZIF-90, leading to the restoration of fluorescence and the diminution of SOS. On the basis of the PO43--induced ZIF-90 decomposition and CD release, a novel method for PO43- ratiometric detection is developed through the dual-signal response of the fluorescence scattering. Under the optimal condition, the method shows a linear range from 1.0 to 50.0 μmol L-1 with a detection limit of 0.23 μmol L-1. Furthermore, the probes are employed to assess PO43- in practical aqueous samples successfully. Compared with the traditional approach, which only records fluorescence signals, the method reported here provides a new strategy to design ratiometric sensors by fluorescence and scattering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call