Abstract

Fluorescent carbon-based materials have drawn increasing attention in recent years owing to exceptional advantages such as high optical absorptivity, chemical stability, biocompatibility, and low toxicity. These materials primarily include carbon dots (CDs), nanodiamonds, carbon nanotubes, fullerene, and fluorescent graphene. The superior properties of fluorescent carbon-based materials distinguish them from traditional fluorescent materials, and make them promising candidates for numerous exciting applications, such as bioimaging, medical diagnosis, catalysis, and photovoltaic devices. Among all of these materials, CDs have drawn the most extensive notice, owing to their early discovery and adjustable parameters. However, many scientific issues with CDs still await further investigation. Currently, a broad series of methods for obtaining CD-based materials have been developed, but efficient one-step strategies for the fabrication of CDs on a large scale are still a challenge in this field. Current synthetic methods are mainly deficient in accurate control of lateral dimensions and the resulting surface chemistry, as well as in obtaining fluorescent materials with high quantum yields (QY). Moreover, it is important to expand these kinds of materials to novel applications. Herein, a facile and highoutput strategy for the fabrication of CDs, which is suitable for industrial-scale production (yield is ca. 58%), is discussed. The QY was as high as ca. 80%, which is the highest value recorded for fluorescent carbon-based materials, and is almost equal to fluorescent dyes. The polymer-like CDs were converted into carbogenic CDs by a change from low to high synthesis temperature. The photoluminescence (PL) mechanism (high QY/PL quenching) was investigated in detail by ultrafast spectroscopy. The CDs were applied as printing ink on the macro/micro scale and nanocomposites were also prepared by polymerizing CDs with certain polymers. Additionally, the CDs could be utilized as a biosensor reagent for the detection of Fe in biosystems. The CDs were prepared by a hydrothermal method, which is described in the Supporting Information (Figure 1a; see also the Supporting Information, Figure S1). The reaction was conducted by first condensing citric acid and ethylenediamine, whereupon they formed polymer-like CDs, which were then carbonized to form the CDs. The morphology and structure of CDs were confirmed by analysis. Figure 1b shows transmission electron microscopy (TEM) images of the CDs, which can be seen to have a uniform dispersion without apparent aggregation and particle diameters of 2–6 nm. The sizes of CDs were also measured by atomic force microscopy (AFM; Figure S2), and the average height was 2.81 nm. From the high-resolution TEM, most particles are observed to be amorphous carbon particles without any lattices; rare particles possess well-resolved lattice fringes. With such a low carbon-lattice-structure content, no obvious D or G bands were detected in the Raman spectra of the CDs (Figure S3). The XRD patterns of the CDs (Figure 1c) also displayed a broad peak centered at 258 (0.34 nm), which is also attributed to highly disordered carbon atoms. Moreover, NMR spectroscopy (H and C) was employed to distinguish sp-hybridized carbon atoms from sp-hybridized carbon atoms (Figure S4). In the H NMR spectrum, sp carbons were detected. In the C NMR spectrum, signals in the range of 30–45 ppm, which correspond to aliphatic (sp) carbon atoms, and signals from 100–185 ppm, which are indicative of sp carbon atoms, were observed. Signals in the range of 170– 185 ppm, which correspond to carboxyl/amide groups, were also present. In the FTIR analysis of CDs, the following were observed: stretching vibrations of C OH at 3430 cm 1 and C H at 2923 cm 1 and 2850 cm , asymmetric stretching vibrations of C-NH-C at 1126 cm , bending vibrations of N H at 1570 cm , and the vibrational absorption band of C=O at 1635 cm 1 (Figure S5). Moreover, the surface groups were also investigated by XPS analysis (Figure 1d). C1s analysis revealed three different types of carbon atoms: graphitic or aliphatic (C=C and C C), oxygenated, and nitrous (Table S1). In the UV/Vis spectra, the peak was focused on 344 nm in an aqueous solution of CDs. In the fluorescence spectra, CDs have optimal excitation and emission wavelengths at 360 nm and 443 nm, and show a blue color under a hand-held UV lamp (Figure 2a). Excitation-dependent PL behavior was [*] S. Zhu, Q. Meng, Prof. J. Zhang, Y. Song, Prof. K. Zhang, Prof. B. Yang State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, 130012 (P. R. China) E-mail: byangchem@jlu.edu.cn

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.