Abstract

There has been increasing recent concern about the agricultural use of organophosphorus pesticides. A rapid and sensitive fluorescence assay for the detection of three organophosphorus pesticides has therefore been developed using 6-carboxy-fluorescein labeling aptamer as the probe and functionalized magnetic nanoparticles as the separation carrier. The aptamer hybridized with complementary DNA conjugated on the surface of the magnetic nanoparticles to form a magnetic aptamer-complementary DNA complex. Upon introducing the target organophosphorus pesticide, the aptamer departed from the complementary DNA, resulting in the fluorescence signal. Under optimized conditions, the limits of detection (LODs, S/N = 3) for trichlorfon, glyphosate, and malathion were 72.20 ng L−1, 88.80 ng L−1, and 195.37 ng L−1, respectively. The method was applied for the detection of trichlorfon, glyphosate, and malathion in spiked lettuce and carrot samples. The recoveries were in the range of 79.4%–118.7%, which were in good agreement with those obtained by gas chromatography, and the relative standard deviations were also acceptable. The method therefore has high sensitivity, so provides a means for the detection of multiple organophosphorus pesticides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call