Abstract

Herein, a rapid, precise alpha-cyclodextrin (α-CD) based gold nanoparticles (AuNPs) for selective detection of malathion pesticides has been reported. These are organophosphorus pesticides (OPPs), that can cause a neurological disease by inhibiting the activity of acetylcholinesterase (AChE). It is important to exploit a quick and sensitive approach for monitoring OPPs. Hence in the present work, a colorimetric assay for the detection of malathion has been developed as a model of OPPs from the environmental sample matrices. The physical and chemical properties of synthesized alpha-cyclodextrin stabilized gold nanoparticles (AuNPs/α-CD) were studied with various characterization techniques, including UV–visible spectroscopy, TEM, DLS and FTIR. The designed sensing system displayed linearity in the broad range of malathion concentrations, 10–600 ng mL−1 with a limit of detection and the limit of quantification values 4.03 ng mL−1 and 12.96 ng mL−1, respectively. The application of the designed chemical sensor was extended to the malathion pesticide determination in real samples such as vegetables, which resulted in almost 100% recovery rates in all the spiked samples. Thus, due to these advantages, the present study established a selective, facile and sensitive colorimetric platform for the direct detection of malathion within a very short time (5 min) with a low detection limit. The practicality of the constructed platform was further executed by the detection of the pesticide in vegetable samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call