Abstract

An instrumented low velocity impact rig has been used to acquire experimental data for impacts in air and underwater for both metallic and composite plates when subjected to a low velocity drop-weight impact with a 2 kg steel impactor. Initial impact studies were conducted in air and then repeated for submersed conditions underwater. Experimental results are compared for all tests with numerical solutions and are found to be in good agreement. For underwater impact, the numerical model incorporates the use of an Eulerian formulation for the water with a coupled fluid-structure interaction (FSI) algorithm. The effect of the water surrounding the target plates was found to reduce the peak accelerations and also reduce the overall impact duration when compared to the same impacts in air. X-Ray imagery of the composite plates also showed visibly reduced damage for the submersed test specimens. This research provides data on the impact response of metallic and composite materials, and validates numerical methodologies for use in future work on FSIs which show strong potential for relevant industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.