Abstract

We study the Lagrangian trajectories of statistically isotropic, homogeneous, and stationary divergence-free spatiotemporal random vector fields. We design this advecting Eulerian velocity field such that it gets asymptotically rough and multifractal, both in space and time, as it is demanded by the phenomenology of turbulence at infinite Reynolds numbers. We then solve numerically the flow equations for a differentiable version of this field. We observe that trajectories get also rough, characterized by nearly the same Hurst exponent as the one of our prescribed advecting field. Moreover, even when considering the simplest situation of the advection by a fractional Gaussian field, we evidence in the Lagrangian framework additional intermittent corrections. The present approach involves properly defined random fields, and asks for a rigorous treatment that would explain our numerical findings and deepen our understanding of this long lasting problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.