Abstract
This study has coupled a wave generating model with the existing in-house 3D Large Eddy Simulation (LES) hydrodynamic model. The primary focus is to simulate the hydrodynamics around a circular cylinder under non-linear waves. To accurately capture the behaviour of non-linear waves, a relaxation method is implemented on an unstructured grid, and its effectiveness is examined in a numerical wave tank with a vertical cylinder. To validate the accuracy of the proposed model, we compare the simulation results with experimental data, specifically analysing the transmission of the wave surface across the cylinder and examining the phased-averaged pressure distribution. The simulations also consider the shedding of lee-wake vortices, and the results are extensively discussed. Significantly, this paper represents the first known investigation of hydrodynamics under non-linear waves using the large-eddy simulation technique on unstructured grids. This approach opens up new possibilities for studying complex wave-structure interactions with improved accuracy and realism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Fluid Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.