Abstract

Floquet topological insulators (FTIs) have been used to study the topological features of a dynamic quantum system within the band structure. However, it is difficult to directly observe the dynamic modulation of band structures in FTIs. Here, we implement the dynamic Su–Schrieffer–Heeger model in periodically curved waveguides to explore new behaviors in FTIs using light field evolutions. Changing the driving frequency produces near-field evolutions of light in the high-frequency curved waveguide array that are equivalent to the behaviors in straight arrays. Furthermore, at modest driving frequencies, the field evolutions in the system show boundary propagation, which are related to topological edge modes. Finally, we believe curved waveguides enable profound possibilities for the further development of Floquet engineering in periodically driven systems, which ranges from condensed matter physics to photonics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.