Abstract

A theoretical realization of the quantum magnetotransport properties for the surface states of ultrathin Floquet topological insulators (FTIs) is presented. Their band structure in the presence of an external perpendicular magnetic field is derived and discussed. Further, the longitudinal and Hall conductivities are evaluated using linear response theory. A new quantum Hall state of matter has been found in FTIs under the application of a magnetic field where the n=0 Landau level undergoes a quantum phase transition from a trivial insulator state to a Hall insulator state. In the former state the Hall conductivity is zero at zero Fermi energy (EF=0) while in the latter the Hall conductivity is equal to e2/h. The proposed effects are accessible to experiments which open new possibilities to study FTIs for the realization of (i) non trivial quantum phase transitions, (ii) exchange of surface states, and (iii) unusual quantum Hall plateaus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.