Abstract
AbstractRegulated rivers generally incise below dams that cut off sediment supply, but how that happens and what the consequences are at different spatial scales is poorly understood. Modern topographic mapping at meter‐scale resolution now enables investigation of the details of spatial processes. In this study, spatial segregation was applied to a meter‐scale raster map of topographic change from 1999 to 2008 on the gravel‐cobble, regulated lower Yuba River in California to answer specific scientific questions about how a decadal hydrograph that included a flood peak of 22 times bankfull discharge affected the river at segment, reach, and morphological unit scales. The results show that the river preferentially eroded sediment from floodplains compared to the channel, and this not only promoted valley‐wide sediment evacuation, but also facilitated the renewal and differentiation of morphological units, especially in the channel. At the reach scale, area of fill and mean net rate of elevational change were directly correlated with better connectivity between the channel and floodplain, while the mean rate of scour in scour areas was influenced by the ratio of slope to bankfull Froude number, a ratio indicative of lateral migration versus vertical downcutting. Hierarchical segregation of topographic change rasters proved useful for understanding multi‐scalar geomorphic dynamics. Copyright © 2016 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.