Abstract

In this paper, a control scheme based on lookup table fuzzy proportionalintegral-derivate (PID) controller for the quadrotor unmanned aerial vehicle (UAV) movement control is proposed. This type of control provides enhanced quadrotor movement control beyond what can be achieved with conventional controllers and has a less computational burden on the processor. The proposed control scheme uses three lookup table based fuzzy logic controllers to control the different movement ranges of a quadrotor (i.e. roll, pitch, and yaw) to achieve stability. The mathematical model of a quadrotor, used to design the proposed controller, is derived based on the Lagrange approach. The processor in the loop (PIL) technique was used to test and validate the proposed control scheme. MATLAB/Simulink environment was used as a platform for the quadrotor model, whereas a low cost and high-performance STM32F407 microcontroller was used to implement the controllers. Data transfer between the hardware and software is via serial communication converter. The control system designed based on simulation is tested and validated using “processor in the loop” techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call