Abstract
The propulsion subsystem of multi-rotor Unmanned Aerial Vehicles (UAV) is one of the most complex due to the aerodynamic, aero-elastic and electromechanical elements it comprises. Therefore, accurate models of this subsystem can be difficult to work with. Therefore, simplified models are normally used for the design of control and navigation algorithms. Considering this, the effectiveness of these algorithms is heavily dependent on the identification process used for the estimation of the parameters of the simplified propulsion model. On the other hand, the novel method of fuzzy adaptive neurons (FANs) have interesting characteristics that make them attractive for applications in which a fast response and good precision are required. In this article, the identification of the parameters of the propulsion system and the trajectory tracking of a multi-rotor UAV using FANs is explored. The efficient learning algorithm of the FANs is applied to identify the parameters of a simplified model of the propulsion system and to the self-tuning proportional integral derivative (PID) controllers of the trajectory tracking system. The proposed simplified model with the identified parameters is tested with experimental data obtained with low speed wind tunnels. The proposed PID controllers with self-tuning gains defined by the algorithm of the FANs for trajectory tracking system, are verified with simulations in MATLAB/Simulink® environment. The results showed that the parameter identification and trajectory tracking with PID controllers with self-tuning gains defined by the algorithm of the FANs, are suitable for estimating the parameters of the simplified model and track the trajectory with better error reduction than a classical PID controller.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.