Abstract

This paper discusses the simulation of an automated guided vehicle (AGV) with the differential-drive mobile robot (DDMR) concept. Using this wheel configuration, the AGV can maneuver in tight workspaces. However, controlling a self-driving AGV with obstacle avoidance is not easy. Therefore, this paper proposes a control system to drive an AGV with several process stages. First, a kinematic model is formulated to represent the AGV with the concept of two wheels that can be controlled differentially. In the second stage, the pure pursuit control method is applied to the model so that the AGV can follow the waypoint coordinates determined and combine them with obstacle avoidance. Finally, the effectiveness of the control system was verified using simulation. The look-ahead parameter with a value of 0.2 meters shows optimal results so that pure pursuit control can reach all waypoint coordinates. Based on this simulation, the AGV prototype was then designed, assembled, and equipped with an internet of things-based obstacle avoidance system. While the simulation proves promising, the anticipated challenges identified in the AGV field test, such as GPS inaccuracies and signal obstructions, underscore the need for ongoing improvements in real-world applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.