Abstract

From virtual reality and telepresence, to augmented reality, holoportation, and remotely controlled robotics, these future network applications promise an unprecedented development for society, economics and culture by revolutionizing the way we live, learn, work and play. In order to deploy such futuristic applications and to cater to their performance requirements, recent trends stressed the need for the Tactile Internet, an Internet that, according to the International Telecommunication Union, combines ultra low latency with extremely high availability, reliability and security. Unfortunately, today's Internet falls short when it comes to providing such stringent requirements due to several fundamental limitations in the design of the current network architecture and communication protocols. This brings the need to rethink the network architecture and protocols, and efficiently harness recent technological advances in terms of virtualization and network softwarization to design the Tactile Internet of the future. In this paper, we start by analyzing the characteristics and requirements of future networking applications. We then highlight the limitations of the traditional network architecture and protocols and their inability to cater to these requirements. Afterward, we put forward a novel network architecture adapted to the Tactile Internet called FlexNGIA, a Flexible Next-Generation Internet Architecture. We then describe some use-cases where we discuss the potential mechanisms and control loops that could be offered by FlexNGIA in order to ensure the required performance and reliability guarantees for future applications. Finally, we identify the key research challenges to further develop FlexNGIA towards a full-fledged architecture for the future Tactile Internet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.