Abstract

Following the great discovery of the electrically conducting polymer, doped polyacetylene, which was honorably recognized in 2000 with the Nobel Prize in chemistry, conjugated molecules, i.e. organic semiconductors, have become an attractive class of active elements for various electronic or opto-electronic applications. Significant effort has been made in both academia and industry to investigate π-conjugated molecules for their unique electrical or opto-electrical properties over the last three decades. The discovery of electroluminescence in conjugated small molecules in 1982 and in polymers in 1989 was a major breakthrough, bringing those molecules to commercial applications within reach for the first time in (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells (OPVs), and field-effect transistors (OFETs). Nowadays, we use OLED displays in everyday life in mobile devices. The potential of these devices, which have been fabricated with conjugated molecules, lies in the possibility to combine the advantages of solution processability, chemical tunability and material strength of polymers with the typical properties of plastics, to realize low-cost, large-area electronic devices on flexible substrates by solution deposition and direct-write graphic art printing techniques.The articles in the flexible OLEDs and organic electronics special issue in Semiconductor Science and Technology deal with a diversity of topics and effectively reflect the current status of research from all over the world on various organic electronic devices, including OLEDs, OPVs, and OFETs. Firstly, S Park et al describe the recent progress in thin-film encapsulation techniques for flexible AM-OLED and large-area OLED lightings, and their applications are discussed by J-W Park et al. Flexible active-matrix OLEDs on plastics require stable and flexible thin-film transistors processed at low temperature. Metal oxide thin-film transistors are proposed as one of the best candidates for the purpose, and J K Jeong discusses their status and perspectives. Next, several excellent research articles on OFETs follow. In particular, Y-Y Noh et al introduce an interesting method to control charge injection in top-gated OFETs by insertion of various self-assembled monolayers in their paper entitled 'Controlling contact resistance in top-gate polythiophene-based field-effect transistors by molecular engineering'.We would like to thank all the authors for their contributions, which combine new results and profound overviews of the state of the art in flexible OLEDs and organic electronics areas; it is this combination that most often adds to the value of topical issues. Special thanks also go to the staff of IOP Publishing, particularly Ms Alice Malhador, for contributing to the success of this effort.In this special issue, many wonderful reviews and research articles provide a detailed overview of recent progress in OLEDs, OPVs and OFETs as well as a scientific understanding of the device physics with these materials. We sincerely believe this special issue is a timely publication and will give productive information to a broad range of readers.Flexible OLEDs and organic electronics ContentsThin film encapsulation for flexible AM-OLED: a review Jin-Seong Park, Heeyeop Chae, Ho Kyoon Chung and Sang In LeeLarge-area OLED lightings and their applications J W Park, D C Shin and S H ParkControlling contact resistance in top-gate polythiophene-based field-effect transistors by molecular engineering Yong-Young Noh, Xiaoyang Cheng, Marta Tello, Mi-Jung Lee and Henning SirringhausBranched polythiophene as a new amorphous semiconducting polymer for an organic field-effect transistor Makoto Karakawa, Yutaka Ie and Yoshio AsoInfluence of mechanical strain on the electrical properties of flexible organic thin-film transistors Fang-Chung Chen, Tzung-Da Chen, Bing-Ruei Zeng and Ya-Wei ChungFrequency operation of low-voltage, solution-processed organic field-effect transistors M Caironi, Y-Y Noh and H SirringhausNonvolatile memory thin-film transistors using an organic ferroelectric gate insulator and an oxide semiconducting channel Sung-Min Yoon, Shinhyuk Yang, Chun-Won Byun, Soon-Won Jung, Min-Ki Ryu, Sang-Hee Ko Park, ByeongHoon Kim, Himchan Oh, Chi-Sun Hwang and Byoung-Gon YuThe status and perspectives of metal oxide thin-film transistors for active matrix flexible displays Jae Kyeong JeongVertical phase segregation of hybrid poly(3-hexylthiophene) and fullerene derivative composites controlled via velocity of solvent drying Tao Song, Zhongwei Wu, Yingfen Tu, Yizheng Jin and Baoquan SunVariations of cell performance in ITO-free organic solar cells with increasing cell areas Jun-Seok Yeo, Jin-Mun Yun, Seok-Soon Kim, Dong-Yu Kim, Junkyung Kim and Seok-In Na

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call