Abstract
Flexible and hydrophilic copolyamide (Co-PA) thin-film composite (TFC) membranes were fabricated as a selective layer on the outer surface of the polyvinylidene fluoride hollow fiber membrane substrate. The fabrication process was carried out by the dip-coating method to create three TFC membranes. The first layer is tannic acid and the second layer is (3-aminopropyl)triethoxysilane, which is followed by Co-PA as a final selective layer. The Co-PA TFC membrane was prepared through interfacial polymerization via the combination of various short-chain aliphatic diamines and conventional aromatic diamines with trimesoyl chloride. The influence of coating layers and total diamine concentration on the Co-PA TFC membrane was investigated in terms of the membrane's physicochemical and mechanical properties, morphology, surface thickness and roughness, water contact angle, surface charge, and nanofiltration (NF) performance. The obtained Co-PA TFC membrane system was operated under low pressure (2 bar) with pure water flux in the range of 23.8-83.9 L m-2 h-1 and exhibited better hydrophilicity, flexibility, molecular weight cutoff, and NF performance compared to the conventional PA TFC membrane. The superior properties of Co-PA are due to the increased chain mobilities provided by short-chain aliphatic diamines in its structure. The best Co-PA TFC membranes, which were synthesized using diamines containing four carbon atoms, achieved a significant improvement in NF membrane performance and selectivity (pure water flux = 56.9 L m-2 h-1 and salt and dye rejection in the range of 46.2-99.2%). This Co-PA TFC membrane is a promising membrane for its high flexibility, hydrophilicity, and selectivity of the NF membrane.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have