Abstract
The inability to effectively activate and control skeletal muscles is a common impairment following a variety of neurological conditions or injuries. One common approach to restoring or augmenting this impairment is the use of external electrical stimulation of the muscles, called functional electrical stimulation (FES). Typically targeted directly at the anatomical muscle belly, existing methodologies often involve high current amplitudes, limited superficial muscle activation, and early onset of muscle fatigue. We have recently explored the capabilities of a non-invasive peripheral nerve stimulation method for the dexterous control of finger and hand muscles. Further development of our stimulation system has enabled us to manually search across a variety of stimulation locations with increased consistency and efficiency. This study examined the preliminary results in two subjects of an automated stimulation system which can rapidly characterize a large combination of stimulation electrodes. Our preliminary findings suggested that the stimulation grid was able to produce a number of clustered EMG activities and finger forces. This robust ability to flexibly generate different grasp patterns demonstrates the promise of the methodology in future applications for FES and rehabilitation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.