Abstract

Using the fixed-node diffusion Monte Carlo (FN-DMC) method, we evaluate the formation energies and charge transition levels of substitutional nitrogen defects in the wide-band-gap semiconductor zinc oxide. The use of a direct-solution, many-body approach inherently secures a good description of electron-electron interactions, achieving high accuracy without adjustable parameters. According to FN-DMC nitrogen is a deep acceptor with a charge transition level 1.0(3) eV above the valence-band maximum when 72-atom supercells are used. This result falls on the lower end of typically reported hybrid density functional results for the same size supercells, which range from 1.0 to 1.8 eV. Further, residual finite-size effects due to charged defect image interactions in the 72-atom supercells are estimated by supercell extrapolation within hybrid density functional theory. When the finite-size correction is included, we obtain a deep acceptor at 1.6(3) eV. This result is in good agreement with recent experimental measurements. We also analyze the local compressibility of charge according to FN-DMC and common density functionals and find that the use of hybrid functionals obtains compressibilities in better agreement with the many-body theory. Our work illustrates the application of the FN-DMC method to a challenging point defect problem, demonstrating that uncertainties and approximations can be well controlled.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.