Abstract

Fluorographene (FG) is a promising graphene-derived material with a large bandgap. Currently existing predictions of its fundamental gap (Δf) and optical gap (Δopt) significantly vary when compared with experiment. We provide here an ultimate benchmark of Δf for FG by many-body GW and fixed-node diffusion Monte Carlo (FNDMC) methods. Both approaches independently arrive at Δf ≈ 7.1 ± 0.1 eV. In addition, the Bethe-Salpeter equation enabled us to determine the first exciton binding energy, Eb = 1.92 eV. We also point to the possible misinterpretation problem of the results obtained for gaps of solids by FNDMC with single-reference trial wave functions of Bloch orbitals. We argue why instead of Δopt, in the thermodynamic limit, such an approach results in energy differences that rather correspond to Δf, and we also outline conditions when this case actually applies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call