Abstract
In evolutionary dynamics, a key measure of a mutant trait's success is the probability that it takes over the population given some initial mutant-appearance distribution. This "fixation probability" is difficult to compute in general, as it depends on the mutation's effect on the organism as well as the population's spatial structure, mating patterns, and other factors. In this study, we consider weak selection, which means that the mutation's effect on the organism is small. We obtain a weak-selection perturbation expansion of a mutant's fixation probability, from an arbitrary initial configuration of mutant and resident types. Our results apply to a broad class of stochastic evolutionary models, in which the size and spatial structure are arbitrary (but fixed). The problem of whether selection favors a given trait is thereby reduced from exponential to polynomial complexity in the population size, when selection is weak. We conclude by applying these methods to obtain new results for evolutionary dynamics on graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.