Abstract

Models of eye movement control in natural scenes often distinguish between stimulus-driven processes (which guide the eyes to visually salient regions) and those based on task and object knowledge (which depend on expectations or identification of objects and scene gist). In the present investigation, the eye movements of a patient with visual agnosia were recorded while she searched for objects within photographs of natural scenes and compared to those made by students and age-matched controls. Agnosia is assumed to disrupt the top-down knowledge available in this task, and so may increase the reliance on bottom-up cues. The patient's deficit in object recognition was seen in poor search performance and inefficient scanning. The low-level saliency of target objects had an effect on responses in visual agnosia, and the most salient region in the scene was more likely to be fixated by the patient than by controls. An analysis of model-predicted saliency at fixation locations indicated a closer match between fixations and low-level saliency in agnosia than in controls. These findings are discussed in relation to saliency-map models and the balance between high and low-level factors in eye guidance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call