Abstract
Increased fitness in tall fescue (Festuca arundinacea) is attributed to infection by Epichloe coenophiala. However, plant growth-promoting (PGP) bacteria also increase the fitness of many host plants, and PGP bacteria have been shown to dominate the phyllosphere and rhizosphere microbiome of E. coenophiala-infected (E+) tall fescue. Because E. coenophialum lives endophytically in tall fescue seeds, we hypothesized that PGP bacteria also live within the seeds and could provide fitness advantages to the host. Endophyte-infected (E+) and endophyte-free (E−) Kentucky-31 tall fescue seeds were surface sterilized to remove epiphytic bacteria. Surface sterilized and non-surface sterilized control plants of each type were cultivated for 6 weeks before withholding water to simulate drought. Normal watering was resumed after 4 days. Plant recovery of each group was measured by assigning a numerical value to tillers based on the state of decline. Surface-sterilized E+ plants were unable to recover as efficiently as E+ controls but outperformed both E− groups. Additionally, total 16S amplified DNA extracted from each seed type was analyzed with Illumina sequencing to assess the internal microbial communities from E+ and E− seeds as well as the seed coat microbiome. E+ seeds have lower diversity of endophytic bacterial species and are dominated by Pseudomonadaceae. Further, several of the seed endophytes are PGP bacterial strains.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have