Abstract

Phosphatases are a diverse group of enzymes that regulate numerous cellular processes. Much of what is known relates to the tyrosine, threonine, and serine phosphatases, whereas the histidine phosphatases have not been studied as much. The structure of phosphohistidine phosphatase (PHPT1), the first identified eukaryotic-protein histidine phosphatase, has been determined to a resolution of 1.9A using multiple-wavelength anomalous dispersion methods. This enzyme can dephosphorylate a variety of proteins (e.g. ATP-citrate lyase and the beta-subunit of G proteins). A putative active site has been identified by its electrostatic character, ion binding, and conserved protein residues. Histidine 53 is proposed to play a major role in histidine dephosphorylation based on these observations and previous mutational studies. Models of peptide binding are discussed to suggest possible mechanisms for substrate recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.