Abstract
Electronic and optical properties of Cu2HgGe(S1-xSex)4 compounds (x = 0, 0.25, 0.5, 0.75, and 1) were revealed by density functional theory (DFT), in which the Heyd-Scuseria-Ernzerhof hybrid functional was used. Dependence of band gap on the Se constituent in Cu2HgGe(S1-xSex)4 was reported. The substitution of Se element basically cause a slightly lattice expansion and minor change of the band gap. Meanwhile, the overlap of Cu and S/Se states becomes more dense leading to better electron/hole pair separation and inter-band transition of photo-excited electrons. The Cu2HgGe(S0.75Se0.25)4 compound was predicted to be very promising absorber due to the low band gap, high absorption rate, and low reflectivity in the incoming light energy range from 0 eV to 2 eV.
 
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.