Abstract
We study highest weight representations of the Borel subalgebra of the quantum toroidal $${\mathfrak{gl}_1}$$ algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of ‘finite type’ modules. By definition, a module over the Borel subalgebra is finite type if the Cartan like current $${\psi^+(z)}$$ has a finite number of eigenvalues, even though the module itself can be infinite dimensional. We use our results to diagonalize the transfer matrix T V,W (u; p) analogous to those of the six vertex model. In our setting T V,W (u; p) acts in a tensor product W of Fock spaces and V is a highest weight module over the Borel subalgebra of quantum toroidal $${\mathfrak{gl}_1}$$ with finite-dimensional weight spaces. Namely we show that for a special choice of finite type modules V the corresponding transfer matrices, Q(u; p) and $${\mathcal{T}(u;p)}$$ , are polynomials in u and satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of Q(u; p). Then we show that the eigenvalues of T V,W (u; p) are given by an appropriate substitution of eigenvalues of Q(u; p) into the q-character of V.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.