Abstract

Truncated Virasoro algebras can be viewed as quotient algebras of the loop–Virasoro algebra. In this paper, we prove that any weight module M with a finite dimensional weight space over any truncated Virasoro algebra \documentclass[12pt]{minimal}\begin{document}${\cal L}(f)={\rm {Vir}}\otimes (\mathbb {C}[t^{\pm 1}]/f\mathbb {C}[t^{\pm 1}])$\end{document}L(f)= Vir ⊗(C[t±1]/fC[t±1]) has a Harish-Chandra submodule, where Vir is the Virasoro algebra and f is a nonzero and not invertible Laurent polynomial in \documentclass[12pt]{minimal}\begin{document}$\mathbb {C}[t^{\pm 1}]$\end{document}C[t±1]. More precisely, if M has a nontrivial upper bounded Vir-submodule, then it has a highest weight \documentclass[12pt]{minimal}\begin{document}${\cal L}(f)$\end{document}L(f)-submodule; if M has a nontrivial lower bounded Vir-submodule, then it has a lowest weight \documentclass[12pt]{minimal}\begin{document}${\cal L}(f)$\end{document}L(f)-submodule; if M is nontrivial over \documentclass[12pt]{minimal}\begin{document}${\cal L}(f)$\end{document}L(f) and does not contain any nontrivial upper bounded nor any nontrivial lower bounded Vir-submodules, then it has a nontrivial Harish-Chandra \documentclass[12pt]{minimal}\begin{document}${\cal L}(f)$\end{document}L(f)-submodule S such that \documentclass[12pt]{minimal}\begin{document}$\dim S_{\lambda }=1$\end{document}dimSλ=1 for all λ ∈ supp(S)∖{0}. As a corollary, any irreducible weight module with a finite dimensional weight space over \documentclass[12pt]{minimal}\begin{document}${\cal L}(f)$\end{document}L(f) is a Harish-Chandra module.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call