Abstract

Benchmark data are presented for the zeroth- through third-order many-body perturbation corrections to the electronic Helmholtz energy, internal energy, and entropy in the canonical ensemble in a wide range of temperature. They are determined as numerical λ-derivatives of the respective quantities computed by thermal full configuration interaction with a perturbation-scaled Hamiltonian, H[over ̂]=H[over ̂]_{0}+λV[over ̂]. Sum-over-states analytical formulas for up to the third-order corrections to these properties are also derived as analytical λ-derivatives. These formulas, which are verified by exact numerical agreement with the benchmark data, are given in terms of the Hirschfelder-Certain degenerate perturbation energies and should be valid for both degenerate and nondegenerate reference states at any temperature down to zero. The results in the canonical ensemble are compared with the same in the grand canonical ensemble.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.