Abstract
A finite-temperature many-body perturbation theory is presented, which expands in power series the electronic grand potential, chemical potential, internal energy, and entropy on an equal footing. Sum-over-states and sum-over-orbitals analytical formulas for the second-order perturbation corrections to these thermodynamic properties are obtained in a time-independent, nondiagrammatic, algebraic derivation, relying on the sum rules of the Hirschfelder-Certain degenerate perturbation energies in a degenerate subspace as well as nine algebraic identities for the zeroth-order thermal averages of one- through four-indexed quantities and products thereof. They reproduce numerically exactly the benchmark data obtained as the numerical derivatives of the thermal-full-configuration-interaction results for a wide range of temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.