Abstract
In 2010, Silva et al. studied certain classes of finite-field matrix channels in order to model random linear network coding where exactly $t$ random errors are introduced. In this paper, we consider a generalization of these matrix channels where the number of errors is not required to be constant, indeed the number of errors may follow any distribution. We show that a capacity-achieving input distribution can always be taken to have a very restricted form (the distribution should be uniform given the rank of the input matrix). This result complements, and is inspired by a paper of Nobrega et al. , which establishes a similar result for a class of matrix channels that model network coding with link erasures. Our result shows that the capacity of our channels can be expressed as maximization over probability distributions on the set of possible ranks of input matrices: a set of linear rather than exponential size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.