Abstract

The nonnegative rank of a nonnegative matrix is the minimum number of nonnegative rank-one factors needed to reconstruct it exactly. The problem of determining this rank and computing the corresponding nonnegative factors is difficult; however it has many potential applications, e.g., in data mining and graph theory. In particular, it can be used to characterize the minimal size of any extended reformulation of a given polytope. In this paper, we introduce and study a related quantity, called the restricted nonnegative rank. We show that computing this quantity is equivalent to a problem in computational geometry, and fully characterize its computational complexity. This in turn sheds new light on the nonnegative rank problem, and in particular allows us to provide new improved lower bounds based on its geometric interpretation. We apply these results to slack matrices and linear Euclidean distance matrices and obtain counter-examples to two conjectures of Beasley and Laffey, namely we show that the nonnegative rank of linear Euclidean distance matrices is not necessarily equal to their dimension, and that the rank of a matrix is not always greater than the nonnegative rank of its square.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call