Abstract

This paper investigates the performance of conventional turning and ultrasonically assisted turning (UAT) processes with plane and textured cutting inserts. Simulations based on the finite-element method were carried out using a software package ABAQUS/Explicit (Dassault Systemes, France). The obtained results were validated experimentally by employing a specially developed UAT setup. The purpose of the paper is to analyze cutting-force variation by the use of textured cutting inserts. Optimized dimensions of the texture pattern were used to model textured cutting inserts. The cutting-force variation in UAT was assessed with finite-element method, confirming diminishing cutting forces at a tool–workpiece interface during a noncontact time. The use of the textured cutting inserts in the UAT process resulted in the lowest cutting forces when compared to a plane tool in UAT as well as both plane and textured tools in the conventional turning process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call