Abstract
The power flow mapping of a loaded ultrasonic tool is necessary for designing the fatigue life of such a tool. As the power flow vector is defined as a tensor product of the vibration velocity and the stress tensor matrix, the entire vibration distribution of the tool is required. However, the three-dimensional (3D) measurement of the entire vibration distribution of the ultrasonic tool is impossible. In this paper, a newly proposed method for calculation of the power flow vector, in which the forced vibration analysis based on finite element method (FEM) is employed together with the partial vibration data measured at the surface of the ultrasonic tool, was applied to two types of rectangular parallelepiped ultrasonic tools. Reasonable power flow maps of both types of tools were successfully obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.