Abstract

Mixed friction acting in a rolling contact increases the v. Mises equivalent stress and shifts the maximum towards the surface. Tangential stresses are superimposed to the stress distribution. The resulting position of the maximum v. Mises stress depends on the magnitude of the friction coefficient and is located directly on the surface from values of about 0.25 upwards. The impact of three-dimensional machine vibrations on rolling bearings in operation can cause severe mixed friction running conditions. Residual stress distributions measured on indentation-free raceways indicate high friction coefficients of up to greater than 0.25. The surfaces reveal smoothing of the finishing structure but no adhesive wear. The simulation of the vibrationally loaded rolling-sliding contact is based on the tribological model of localized friction coefficient. This approach avoids seizing by allowing for increased friction only in intermittently changing subareas of the contact at low sliding speed. The macroscopic friction coefficient, meeting a mixing rule, does not exceed 0.1. The finite element method (FEM) is used for the stress analysis. In the first step, a simplified FEM model involves a circumferentially oriented band of high friction coefficient from 0.2 to 0.5 within a cylindrical roller contact. The resulting depth distributions of the v. Mises equivalent stress during overrolling and the corresponding residual stresses are evaluated below the inner ring raceway of the bearing. The features of the FEM model are discussed in detail. The increased sliding friction in the band shifts the maximum of the v. Mises equivalent stress to the surface. Compressive residual stresses are induced in the edge zone. Depending on the applied Hertzian pressure, an additional subsurface peak occurs. First results of the finite element analysis are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call