Abstract

This paper describes the application of finite element techniques to the solution of nonlinear concrete problems. Reinforced concrete thick plates and shells are first considered for which both a perfect and strain-hardening plasticity approach are employed to model the compressive behaviour. A dual criterion for yielding and crushing in terms of stresses and strains is considered, which is complemented with a tension cut-off representation. Degenerate thick shell elements employing a layered discretisation through the thickness are adopted and both reduced and selectively integrated 8-node serendipity and heterosis elements are considered. Thermal loading of prestressed concrete structures is also considered which necessitates the inclusion of time effects in the analysis. The technique described in this paper involves concurrently solving an uncoupled set of equations within a time interval to provide both the displacement and temperature increments. A two-level time stepping scheme is employed to predict temperature changes within a time interval and elasto-viscoplastic material analysis is performed using an explicit forward-difference scheme incorporating an equilibrium iteration procedure. The constitutive model for the concrete is essentially identical to that employed for the plate and shell analysis. Numerical examples are presented for both types of analysis and comparison is made with experimental results whenever possible. Additionally, results for thermal loading are presented which indicate that a full transient thermal-mechanical analysis is sometimes essential in order to obtain a realistic structural response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call